首页> 外文OA文献 >Stability of the perovskite structure and possibility of the transition to the post-perovskite structure in CaSiO3, FeSiO3, MnSiO3 and CoSiO3
【2h】

Stability of the perovskite structure and possibility of the transition to the post-perovskite structure in CaSiO3, FeSiO3, MnSiO3 and CoSiO3

机译:CaSiO3,FeSiO3,MnSiO3和CoSiO3中钙钛矿结构的稳定性以及过渡到钙钛矿后结构的可能性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

High pressure and high temperature experiments on CaSiO3, FeSiO3, MnSiO3 and CoSiO3 using a laser-heated diamond anvil cell combined with synchrotron X-ray diffraction were conducted to explore the perovskite structure of these compounds and the transition to the post-perovskite structure. The experimental results revealed that MnSiO3 has a perovskite structure from relatively low pressure (ca. 20 GPa) similarly to CaSiO3, while the stable forms of FeSiO3 and CoSiO3 are mixtures of mono-oxide (NaCl structure) + high pressure polymorph of SiO2 even at very high pressure and temperature (149 GPa and 1800 K for FeSiO3 and 79 GPa and 2000 K for CoSiO3). This strongly suggests that the crystal field stabilization energy (CFSE) of Fe2+ with six 3d electrons and Co2+ with seven 3d electrons at the octahedral site of mono-oxides favors a mixture of mono-oxide + SiO2 over perovskite where Fe2+ and Co2+ would occupy the distorted dodecahedral sites having a smaller CFSE (Mn2+ has five 3d electrons and has no CFSE). The structural characteristics that the orthorhombic distortion of MnSiO3 perovskite decreases with pressure and the tolerance factor of CaSiO3 perovskite (0.99) is far from the orthorhombic range suggest that both MnSiO3 and CaSiO3 perovskites will not transform to the CaIrO3-type post-perovskite structure even at the Earth's core-mantle boundary conditions, although CaSiO3 perovskite has a potentiality to transform to the CaIrO3-type post-perovskite structure at still higher pressure as long as another type of transformation does not occur.
机译:利用激光加热的金刚石砧盒结合同步加速器X射线衍射对CaSiO3,FeSiO3,MnSiO3和CoSiO3进行了高压和高温实验,以探索这些化合物的钙钛矿结构以及向后钙钛矿结构的过渡。实验结果表明,MnSiO3与CaSiO3相似,在相对较低的压力(约20 GPa)下具有钙钛矿结构,而FeSiO3和CoSiO3的稳定形式是单氧化物(NaCl结构)+ SiO2高压多晶型物的混合物。非常高的压力和温度(FeSiO3为149 GPa和1800 K,CoSiO3为79 GPa和2000 K)。这强烈表明,在单氧化物的八面体位点,具有6个3d电子的Fe2 +和具有7个3d电子的Co2 +的晶体场稳定能(CFSE)优于钙钛矿的单氧化物+ SiO2混合物,其中Fe2 +和Co2 +将占据钙钛矿。 CFSE较小的扭曲的十二面体位点(Mn2 +具有五个3d电子且没有CFSE)。 MnSiO3钙钛矿的正交畸变随压力降低而结构特征,而CaSiO3钙钛矿的容许因子(0.99)远离正交关系,这表明MnSiO3和CaSiO3钙钛矿都不会转变为CaIrO3型钙钛矿后结构。尽管没有发生另一种类型的转化,但是CaSiO3钙钛矿具有在更高的压力下转化为CaIrO3型钙钛矿后结构的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号